quarta-feira, 31 de agosto de 2011


Futuro do Universo pode estar influenciando o presente

Julie Rehmeyer - FQXi - 30/08/2011
Futuro do Universo pode estar influenciando o presente
Quando se pensa o Universo a partir das leis da mecânica quântica começam a fazer sentido algumas ideias aparentemente inconcebíveis.[Imagem: Anne Goodsell/Tommi Hakala]


Influências do futuro sobre o passado
Uma reformulação radical da mecânica quântica sugere que o Universo tem um destino definido, e que esse destino já traçado volta no tempo para influenciar o passado, ou o presente.
É uma afirmação alucinante, mas alguns cosmólogos já acreditam que uma reformulação radical da mecânica quântica, na qual o futuro pode afetar o passado, poderia resolver alguns dos maiores mistérios do universo, incluindo a forma como a vida surgiu.
E, além da origem da vida, poderia ainda explicar a fonte da energia escura e resolver outros enigmas cósmicos.
O que é mais impressionante é que os pesquisadores afirmam que recentes experimentos de laboratório confirmam de forma dramática os conceitos que servem de base para esta reformulação.
Futuro do Universo pode estar influenciando o presente
Recentemente, cientistas descobriram umaconexão surpreendente entre fenômenos quânticos. [Imagem: Adaptado de Chanchicto/Wikimedia]
Ordem oculta na incerteza
O cosmólogo Paul Davies, da Universidade do Arizona, nos Estados Unidos, está iniciando um projeto para investigar que influência o futuro pode estar tendo no presente, com a ajuda do Instituto FQXi, uma entidade sem fins lucrativos cuja proposta é discutir as questões fundamentais da física e doUniverso.
É um projeto que vem sendo acalentado há mais de 30 anos, desde que Davies ouviu falar pela primeira vez das tentativas do físico Yakir Aharonov para chegar à raiz de alguns dos paradoxos da mecânica quântica.
Um desses paradoxos é o aparente indeterminismo da teoria: você não pode prever com precisão o resultado de experimentos com uma partícula quântica; execute exatamente o mesmo experimento em duas partículas idênticas e você vai obter dois resultados diferentes.
Enquanto a maioria dos físicos que se confrontaram com esse problema concluíram que a realidade é, fundamentalmente, profundamente aleatória, Aharonov argumenta que há uma ordem oculta dentro da incerteza. Mas, para entender sua origem, é necessário um salto de imaginação que nos leva além da nossa visão tradicional de tempo e causalidade.
Em sua reinterpretação radical da mecânica quântica, Aharonov argumenta que duas partículas aparentemente idênticas comportam-se de maneiras diferentes sob as mesmas condições porque elas são fundamentalmente diferentes. Nós apenas não detectamos esta diferença no presente porque ela só pode ser revelada por experiências realizadas no futuro.
"É uma ideia muito, muito profunda", diz Davies.
Futuro do Universo pode estar influenciando o presente
A flecha quântica do tempo aparentemente perde o rumo no mundo quântico. [Imagem: iStockphoto/danesteffes/PRF]
Consequências presentes do futuro
A abordagem de Aharonov sobre a mecânica quântica pode explicar todos os resultados normais que as interpretações convencionais também conseguem, mas tem a vantagem adicional de explicar também o aparente indeterminismo da natureza.
Além do mais, uma teoria na qual o futuro pode influenciar o passado pode ter repercussões enormes e muito necessárias para a nossa compreensão do universo, diz Davies.
Os cosmólogos que estudam as condições do início do universo ficam intrigados sobre o porquê do cosmos parecer tão idealmente talhado para a vida.
Mas há também outros mistérios: Por que é que a expansão do universo está se acelerando? Qual é a origem dos campos magnéticos visto nas galáxias? E por que alguns raios cósmicos parecem ter energias impossivelmente altas?
Estas questões não podem ser respondidas apenas olhando para as condições passadas do universo.
Mas talvez, pondera Davies, se o cosmos já tem definidas algumas condições finais nele próprio - um destino -, então isto, combinado com a influência das condições iniciais estabelecidas no início do universo, pode perfeitamente explicar estes enigmas cósmicos.
Futuro do Universo pode estar influenciando o presente
Aharonov já teve ideias menos extravagantes, como a aplicação da nanotecnologia à água. [Imagem: Katsir et al.]
Testando a flecha do tempo
É uma ideia muito boa - embora extremamente estranha.
Mas haveria alguma maneira de verificar a sua viabilidade? Dado que ela invoca um futuro ao qual ainda não temos acesso como causa parcial do presente, isto parece ser uma tarefa impossível.
No entanto, testes de laboratório engenhosamente inventados recentemente colocaram o futuro em teste e descobriram que ele poderia realmente estar afetando o passado.
Aharonov e seus colegas previram há muito tempo que, para certos experimentos quânticos muito específicos, realizados em três etapas sucessivas, o modo como a terceira e última etapa é realizada pode mudar dramaticamente as propriedades medidas durante o passo intermediário. Assim, ações realizadas no futuro (na terceira etapa), seriam vistas afetando os resultados das medições efetuadas no passado (na segunda etapa).
Em particular, nos últimos dois anos, equipes experimentalistas realizaram repetidamente experiências com lasers que mostram que, ajustando o passo final do experimento, é possível introduzir amplificações dramáticas no montante pelo qual o feixe de laser é desviado durante as etapas intermediárias do experimento. Em alguns casos, a deflexão observada durante a etapa intermediária pode ser amplificada por um fator de 10.000, dependendo das escolhas feitas na etapa final.
Estes resultados estranhos podem ser explicados de forma simples pelo quadro traçado por Aharonov: a amplificação intermediária é o resultado da combinação de ações realizadas tanto no passado (na primeira etapa) quanto no futuro (na etapa final).
É muito mais complicado explicar esses resultados usando interpretações tradicionais da mecânica quântica, afirma Andrew Jordan, da Universidade de Rochester, nos Estados Unidos, que ajudou a conceber um dos experimentos com laser.
A situação pode ser comparada à forma como o modelo heliocêntrico do Sistema Solar, de Copérnico, e o modelo geocêntrico de Ptolomeu, ambos fornecem interpretações válidas dos mesmos dados planetários, mas o modelo heliocêntrico é muito mais simples e mais elegante.
Futuro do Universo pode estar influenciando o presente
Uma das ideias "selvagens" mais recentes de Davies foi a de uma viagem sem volta a Marte. [Imagem: NASA/JPL]
Consequências cósmicas
Embora os experimentos com laser estejam dando boas notícias para a equipe, Davies, Aharonov, Tollaksen e seu colega Menas Kefatos, da Universidade Chapman, na Califórnia, estão agora à procura de consequências cósmicas observáveis de informações do futuro influenciando o passado.
Um bom lugar para procurar é a radiação cósmica de fundo (CMB), o "brilho" remanescente do Big Bang. A CMB tem ondulações fracas de calor e frio e, trinta anos atrás, Davies desenvolveu um modelo com seu então aluno Tim Bunch que descreve essas ondas no nível quântico.
Davies e Tollaksen estão agora revisando este modelo no novo arcabouço quântico.
Físicos têm ideias já bem desenvolvidas sobre como era o estado inicial do universo e como pode acabar sendo seu estado final - muito provavelmente um vácuo, o resultado inevitável da contínua expansão.
A equipe está colocando estas ideias junto com seu novo modelo para ver se ele consegue prever assinaturas características da influência do futuro na CMB que possam ser captadas pelo telescópio espacial Planck.
"A cosmologia é um caso ideal para esta abordagem," afirma Bill Unruh, da Universidade da Colúmbia Britânica, no Canadá. "Desde que Aharonov encontrou esses resultados tão estranhos em algumas situações, vale a pena olhar para a cosmologia."
Davies ainda não sabe se essas ideias vão produzir resultados. Mas se o fizerem, seria revolucionário.
"A coisa mais notável sobre Paul," avalia Michael Berry, da Universidade de Bristol, "é que ele tem ideias muito selvagens combinadas com extremo cuidado e sobriedade."
Este pode ser exatamente o caráter necessário para fazer um grande avanço. Pode até ser o destino de Davies, uma mescla de seu futuro e de seu passado.

domingo, 28 de agosto de 2011

Do nano ao super, cheio de energia

Redação do Site Inovação Tecnológica - 25/08/2011
Supercapacitor sólido: Do nano ao super, cheio de energia
O pesquisador vislumbra um carro elétrico no qual a bateria estaria distribuída por todo o veículo, incluindo chassi, portas, teto, piso etc. [Imagem: Rice University]
Esta é a promessa feita por Robert Hauge e seus colegas da Universidade Rice, nos Estados Unidos.
Capacitores e supercapacitores
Os pesquisadores criaram um sistema de armazenamento de energia de estado sólido e recarregável, usando supercapacitores feitos à base de nanotubos de carbono.
Os capacitores comuns,que liberam rápidas rajadas de energia, podem ser descarregados e recarregados centenas de milhares de vezes.
Já os capacitores elétricos de dupla camada (EDLCs), mais conhecidos comosupercapacitores, são componentes híbridos que mantêm centenas de vezes mais energia do que um capacitor padrão, como uma bateria, mantendo a capacidade de carga e descarga rápidas.
Mas os supercapacitores até agora dependiam de eletrólitos líquidos ou de tipo gel, que deixam de funcionar em condições muito quentes ou muito frias.
Eletrólito sólido
A equipe do Dr. Hauge desenvolveu um material à base de óxidos que substitui inteiramente o eletrólito líquido.
E eles fizeram isto em nanoescala: a chave para uma elevada capacitância é a área disponível para os elétrons - e poucas estruturas conhecidas disponibilizam tanta área superficial em um espaço tão pequeno quanto os nanotubos de carbono.
Usando uma técnica desenvolvida pela própria equipe para fabricar nanotubos de grandes dimensões, os pesquisadores fizeram os nanotubos de carbono se aglomerarem em grupos com cerca de 15 a 20 nanômetros, com até 50 micrômetros de altura - uma relação altura/largura superior a 500.
Esse carpete de nanotubos é posto sobre um eletrodo de cobre com camadas em escala atômica de ouro e titânio, para ajudar a grudar tudo e manter a estabilidade elétrica.
O conjunto foi coberto com revestimentos muito finos de óxido de alumínio (o dielétrico) e óxido de zinco dopado com alumínio (o contra-eletrodo) por meio de um processo chamado deposição de camada atômica.
Um eletrodo superior de prata completa o circuito.
Carro-bateria
Hauge afirma que esse supercapacitor, nascido em nanoescala, é estável e escalável. Em tese, é possível construir usinas inteiras com eles, acumulando a energia gerada pelos ventos ou pelo Sol e liberando-a quando necessário.
Ele vislumbra um carro elétrico no qual a bateria estaria distribuída por todo o veículo, incluindo chassi, portas, teto, piso etc.
"Todas as soluções de estado sólido para armazenamento de energia poderão ser intimamente integradas nos aparelhos, incluindo telas flexíveis, bio-implantes, muitos tipos de sensores e todos os aparelhos eletrônicos que possam se beneficiar de taxas rápidas de carga e descarga," diz Hauge.
Recentemente, um outro grupo de pesquisadores sugeriu o uso de nanocapacitores eletrostáticos, com o mesmo potencial.
Rápido demais
Antes que qualquer dessas possibilidades ganhe uso prático, contudo, os cientistas terão que lidar com a "mania" dos capacitores de liberarem suas elevadas doses de energia de uma vez só - ao contrário das baterias, que têm menor densidade de energia, mas liberam de forma mais comedida.
Embora isso seja uma característica altamente desejável para sistemas como o KERS, ela não é adequada como única fonte de energia para um veículo elétrico porque o veículo teria altíssima potência, mas ficaria sem carga rápido demais.
Bibliografia:

Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates
Cary L. Pint, Nolan W. Nicholas, Sheng Xu, Zhengzong Sun, James M. Tour, Howard K. Schmidt, Roy G. Gordon, Robert H. Hauge
Carbon
Vol.: 49, Issue 14, November 2011, Pages 4890-4897
DOI: 10.1016/j.carbon.2011.07.011
Imagine uma tecnologia de armazenamento de energia que permita desde a integração das baterias no próprio chip que irão alimentar, até seu uso em larga escala, formando usinas inteiras.